We study electronic transport through a quantum point contact, where the interaction between the electrons is approximated by a contact potential. Our numerical approach is based on the nonequilibrium Green-function technique which is evaluated at the Hartree-Fock level. We show that this approach allows us to reproduce relevant features of the so-called "0.7 anomaly" observed in the conductance at low temperatures, including the characteristic features in recent shot-noise measurements. This is consistent with a spin-splitting interpretation of the process, and indicates that the 0.7 anomaly should also be observable in transport experiments with ultracold fermionic atoms.