2022
DOI: 10.48550/arxiv.2205.00863
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Quasiconvexity preserving property for fully nonlinear nonlocal parabolic equations

Abstract: This paper is concerned with a general class of fully nonlinear parabolic equations with monotone nonlocal terms. We investigate the quasiconvexity preserving property of positive, spatially coercive viscosity solutions. We prove that if the initial value is quasiconvex, the viscosity solution to the Cauchy problem stays quasiconvex in space for all time. Our proof can be regarded as a limit version of that for power convexity preservation as the exponent tends to infinity. We also present several concrete exa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 27 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?