Recently, no-go theorems for the existence of solitonic solutions in Einstein-Maxwellscalar (EMS) models have been established [1]. Here we discuss how these theorems can be circumvented by a specific class of non-minimal coupling functions between a real, canonical scalar field and the electromagnetic field. When the non-minimal coupling function diverges in a specific way near the location of a point charge, it regularises all physical quantities yielding an everywhere regular, localised lump of energy. Such solutions are possible even in flat spacetime Maxwell-scalar models, wherein the model is fully integrable in the spherical sector, and exact solutions can be obtained, yielding an explicit mechanism to de-singularise the Coulomb field. Considering their gravitational backreaction, the corresponding (numerical) EMS solitons provide a simple example of self-gravitating, localised energy lumps. ‡