The Common Pheasant Phasianus colchicus is widely distributed in temperate to subtropical regions of the Palaearctic realm. Populations of Common Pheasant have been classified into five subspecies groups based on morphological variations in male plumage. Previous phylogeographical studies have focused on limited sets of subspecies groups in the eastern Palaearctic and knowledge on subspecies in the western Palaearctic region is still poor. In this study, we undertake the first comprehensive analysis of subspecies from all five defined subspecies groups across the entire Palaearctic region. Two mitochondrial (CYTB and CR) and two nuclear (HMG and SPI) loci were used to investigate genetic relationships of these subspecies groups and to infer their dispersal routes. Our results revealed that the subspecies elegans, with its range in northwestern Yunnan, China, was in the basal position among 17 studied subspecies, supporting a previous hypothesis that the Common Pheasant most probably originated in forests in southeastern China. Subspecies in the western Palaearctic region nested within the most subspecies‐rich torquatus group (‘Grey‐rumped Pheasants’), indicating that the torquatus group is not a clade but instead forms a gradation with other subspecies and subspecies groups. Our dating analysis suggested that the initial divergence among populations of Common Pheasant originated around 3.4 Mya with subsequent dispersal into the Western Palaearctic region during the Late Pliocene–Lower Pleistocene approximately 2.5–1.8 Mya. We propose two possible east‐to‐west colonization routes for the Common Pheasant and suggest conservation implications for some regional subspecies. Overall, this study demonstrates the lack of concordance between morphology‐based subspecies delimitation and their genetic relationships. This is likely to be a consequence of initial isolation due to historical vicariance followed by population admixture due to recent range expansion of Common Pheasant in the western Palaearctic region.