Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease caused by a novel coronavirus, SARS-coronavirus (SARS-CoV). The SARS-CoV spike (S) protein is composed of two subunits; the S1 subunit contains a receptor-binding domain that engages with the host cell receptor angiotensin-converting enzyme 2 and the S2 subunit mediates fusion between the viral and host cell membranes. The S protein plays key parts in the induction of neutralizing-antibody and T-cell responses, as well as protective immunity, during infection with SARS-CoV. In this Review, we highlight recent advances in the development of vaccines and therapeutics based on the S protein. SARS-CoV is an enveloped, single and positive-stranded RNA virus2. Its genome RNA encodes a non-structural replicase polyprotein and structural proteins, including spike (S), envelope (E), membrane (M) and nucleocapsid (N) proteins3-5. SARS-CoV, a zoonotic virus, resides in hosts that form its natural reservoir, such as bats, but can also infect intermediate hosts, such as small animals (for example, palm civets), before being transmitted to humans6-8. SARS-CoV can infect and replicate in several cell types in the human body and causes serious pathological changes
Zoonotic virusA virus that normally exists in vertebrate animals, but can also be transmitted to humans and can cause disease in both animals and humans.
Box 1
Pathology of SARS and the life cycle of SARS-CoV infectionSevere acute respiratory syndrome-coronavirus (SARS-CoV) spreads primarily through droplets (respiratory secretions) and close person-to-person contact. After the virus enters into the body, it binds to primary target cells that express abundant virus receptor, the angiotensin-converting enzyme 2 (ACE2), including pneumocytes and enterocytes in the respiratory system. The virus enters and replicates in these cells. The matured virions are then released to infect new target cells121 (FIG. 1). SARS-CoV can also infect mucosal cells of intestines, tubular epithelial cells of kidneys, epithelial cells of renal tubules, cerebral neurons and immune cells122,123. Infectious viral particles in patients with SARS can be excreted through respiratory secretions, stool, urine and sweat. SARS-CoV infection damages lung tissues owing to elevated levels of production and activation of proinflammatory chemokines and cytokines124, resulting in atypical pneumonia with rapid respiratory deterioration and failure.Neutralizing antibodies and/or T-cell immune responses can be raised directly against several SARS-CoV proteins21-23, but mainly target the S protein20,24-26, suggesting that S protein-
Structure of the SARS-CoV S proteinThe spikes of SARS-CoV are composed of trimers of S protein, which belongs to a group of class I viral fusion glycoproteins that also includes HIV glyco-protein 160 (Env), influenza haemagglutinin (HA), paramyxovirus F and Ebola virus glycoprotein28. The SARS-CoV S protein encodes a surface glycoprotein precursor that is predicted to be 1,255 amino acids in l...