1984
DOI: 10.1051/jphys:01984004505080100
|View full text |Cite
|
Sign up to set email alerts
|

Quatrième Rencontre de Physique Statistique de Paris

Abstract: Les jeudi 26 et vendredi 27 janvier 1984 s'est tenue à l'E.S.P.C.I., la Quatrième Rencontre de Physique Statistique de Paris. Comme les années précédentes il s'est agi d'une rencontre informelle présentant, à côté de quelques revues et d'une table ronde, un très grand nombre de communications courtes des divers domaines de la physique statistique : mécanique statistique de l'équilibre et du non-équilibre, solides désordonnés, turbulence et stochasticité, liquides, plasmas, polymères, milieux aléatoires macrosc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
70
0

Year Published

1996
1996
2018
2018

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 42 publications
(70 citation statements)
references
References 0 publications
0
70
0
Order By: Relevance
“…In order to develop the renormalization group analysis we recast the Langevin equation (9) as a dynamic functional [31][32][33]6]…”
Section: A Renormalization Group Analysismentioning
confidence: 99%
“…In order to develop the renormalization group analysis we recast the Langevin equation (9) as a dynamic functional [31][32][33]6]…”
Section: A Renormalization Group Analysismentioning
confidence: 99%
“…This is the third of a series of papers where we investigate the noisy Burgers equation in the context of modelling a growing interface; for a brief account of the present work we also we refer to [1]. In the previous two papers, in the following denoted paper I [2] and paper II [3]; a brief account of paper II also appeared in [4], we discussed the originally proposed one dimensional noiseless Burgers equation [5,6] from a solitonic point of view and the noisy one dimensional Burgers equation [7,8] in terms of a Martin-Siggia-Rose path integral [9][10][11][12][13][14], respectively.…”
Section: Introductionmentioning
confidence: 99%
“…Here ∆ constitutes an essential singularity in the same manner as the temperature entering the usual Boltzmann factor. Recasting the stochastic Langevin equation (1.7) in terms of a Martin-Siggia-Rose path integral [9][10][11][12]14,13] we proposed a principle of least action in the nonperturbative weak noise limit ∆ → 0 and derived canonical saddle point or field equations (note that in paper II the noise field ϕ was rotated, ϕ → −iϕ) ∂ ∂t − λu∇ u= ν∇ 2 ϕ , (1.10)…”
Section: Introductionmentioning
confidence: 99%
“…Nevertheless we can use the functional that generates the technique since it is a non-perturbative object. Such generating functional was introduced in [8,9], for the equation (1.1) it has the form Z(λ) ≡ exp i dt dr λu = DuDp exp iI + i dt dr λu , (1.3) where p is an auxiliary field and the effective action is I = dt dr p ∂ t u + L(u)…”
Section: Introductionmentioning
confidence: 99%