“…The performances of conventional room-temperature sensors, including sensitivities, response times, and lifetime, degrade rapidly when temperature gets lower. A few applications using optical fiber sensors at cryogenic temperatures have been developed lately, such as FBGs embedded in or bonded to substrates (e.g., PMMA, Teflon) with larger thermal expansion coefficients for overcoming their low temperature sensitivity, a continuous liquid level sensing system for liquid nitrogen and helium tanks [ 11 , 17 ].And some optical fiber sensors including FBG, Raman-scattering, Rayleigh-scattering and Brillouin-scattering for monitoring cryogenic temperature of high-temperature superconducting tapes at 77 K or even lower temperature have been attempted [ 20 , 21 , 22 , 23 ]. In these investigations, optical fiber sensors were mainly developed to measure cryogenic temperature in which the deformation of the materials and structures commonly were not considered.…”