22nd International Conference on Data Engineering (ICDE'06) 2006
DOI: 10.1109/icde.2006.123
|View full text |Cite
|
Sign up to set email alerts
|

Query Decomposition: A Multiple Neighborhood Approach to Relevance Feedback Processing in Content-based Image Retrieval

Abstract: Today's Content-Based Image Retrieval (CBIR) techniques are based on the "k-nearest neighbors" (k-NN) model.They retrieve images from a single neighborhood using low-level visual features. In this model, semantically similar images are assumed to be clustered in the high-dimensional feature space. Unfortunately, no visual-based feature vector is sufficient to facilitate perfect semantic clustering; and semantically similar images with different appearances are always clustered into distinct neighborhoods in … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
27
0
4

Year Published

2006
2006
2018
2018

Publication Types

Select...
4
2
2

Relationship

1
7

Authors

Journals

citations
Cited by 38 publications
(36 citation statements)
references
References 17 publications
0
27
0
4
Order By: Relevance
“…Nhiều hệ thống CBIR đã đƣợc phát triển, gồm QBIC [19], Photobook [4], MARS [25] NeTra [23], PicHunter [18] , Blobworld [6], VisualSEEK [28], SIMPLIcity [22] và những hệ thống khác [15,32,17,16,20,24,26,21]. Trong một hệ thống CBIR tiêu biểu, các đặc trƣng ảnh trực quan mức thấp (tức là màu, kết cấu và hình dạng) đƣợc trích rút tự động cho mục tiêu đánh chỉ số và mô tả ảnh.…”
Section: Giới Thiệuunclassified
“…Nhiều hệ thống CBIR đã đƣợc phát triển, gồm QBIC [19], Photobook [4], MARS [25] NeTra [23], PicHunter [18] , Blobworld [6], VisualSEEK [28], SIMPLIcity [22] và những hệ thống khác [15,32,17,16,20,24,26,21]. Trong một hệ thống CBIR tiêu biểu, các đặc trƣng ảnh trực quan mức thấp (tức là màu, kết cấu và hình dạng) đƣợc trích rút tự động cho mục tiêu đánh chỉ số và mô tả ảnh.…”
Section: Giới Thiệuunclassified
“…In multiple-point movement techniques such as Query Expansion [8], Qcluster [20], and Query Decomposition [17], multiple query points are used to define the ideal space that is most likely to contain relevant results. Query Expansion groups query points into clusters and chooses their centroids as Q r 's representatives (see Figure 4.1).…”
Section: Related Workmentioning
confidence: 99%
“…It uses an aggregate distance function to estimate the (dis)similarity of an object to a set of desirable images. To bridge the semantic gap more effectively, we recently proposed Query Decomposition [17]. Based on the user's relevance feedback, this scheme automatically decomposes a given query into localized subqueries, which more accurately capture images with similar semantics but in very different appearance (e.g., the front view and side view of a car), see Figure 4.3.…”
Section: Related Workmentioning
confidence: 99%
See 1 more Smart Citation
“…We extend this approach to handle multi-cluster queries. Recent research shows that decomposing complex queries into multiple clusters of (sub)queries yields higher precision than the traditional one-cluster methods [3].…”
Section: Introductionmentioning
confidence: 99%