Cluster computing technologies are rapidly advancing and user-generated online reviews are booming in the current Internet and e-commerce environment. The latest question–answering (Q&A)-style reviews are novel, abundant and easily digestible product reviews that also contain massive valuable information for customers. In this paper, we mine valuable aspect information of products contained in these reviews on GPU clusters. To achieve this goal, we utilize two subtasks of aspect-based sentiment analysis: aspect term extraction (ATE) and aspect category classification (ACC). Most previous works focused on only one task or solved these two tasks separately, even though they are highly interrelated, and they do not make full use of abundant training resources. To address this problem, we propose a novel multi-task neural learning model to jointly handle these two tasks and explore the performance of our model on GPU clusters. We conducted extensive comparative experiments on an annotated corpus and found that our proposed model outperforms several baseline models in ATE and ACC tasks on GPU clusters, yielding significant strides in data mining for these types of reviews.