Objective: Antiseizure drugs (ASDs) are known to cause a wide range of adverse drug reactions (ADRs). Recently, electronic health care data using the common data model (CDM) have been introduced and commonly adopted in pharmacovigilance research. We aimed to analyze ASD-related ADRs using CDM and to assess the feasibility of CDM analysis in monitoring ADR in a single tertiary hospital. Methods: We selected five ASDs: oxcarbazepine (OXC), lamotrigine (LTG), levetiracetam (LEV), valproic acid (VPA), and topiramate (TPM). Patients diagnosed with epilepsy and exposed to monotherapy with one of the ASDs before age 18 years were included. We measured four ADR outcomes: (1) hematologic abnormality, (2) hyponatremia, (3) elevation of liver enzymes, and (4) subclinical hypothyroidism. We performed a subgroup analysis to exclude the effects of concomitant medications. Results: From the database, 1344 patients were included for the study. Of the 1344 patients, 436 were receiving OXC, 293 were receiving LTG, 275 were receiving LEV, 180 were receiving VPA, and 160 were receiving TPM. Thrombocytopenia developed in 14.1% of patients taking VPA. Hyponatremia occurred in 10.5% of patients taking OXC. Variable ranges of liver enzyme elevation were detected in 19.3% of patients taking VPA. Subclinical hypothyroidism occurred in approximately 21.5% to 28% of patients with ASD monotherapy, which did not significantly differ according to the type of ASD. In a subgroup analysis, we observed similar ADR tendencies, but with less thrombocytopenia in the TPM group. Significance: The incidence and trends of ADRs that were evaluated by CDM were similar to the previous literature. CDM can be a useful tool for analyzing ASDrelated ADRs in a multicenter study. The strengths and limitations of CDM should be carefully addressed.
K E Y W O R D Sadverse drug reaction, antiseizure drugs, common data model, epilepsy, pharmacovigilance | 611 CHOI et al.