One of the principle features on which cloud environments operate is the scaling up and down of resources based on users' needs, called elasticity. This feature is limited to the cloud's physical resources. This article proposes to enhance the elasticity of a cloud in an intelligent manner by communicating with an optimal external cloud (EC) and borrowing additional resources from it when the cloud runs out of resources. This inter-cloud communication is secured by a model whose structure is similar to the Kerberos protocol. To choose the optimal EC for a particular request of a user, a list of parameters, collectively termed as RePVoCRaD, are enumerated. Once chosen, trust is established with the chosen EC and inter-cloud communication begins. While existing works deal with third parties to establish or secure inter-cloud communication, this work is novel in that there is absence of third parties in the entire process, thereby reducing security threats and additional costs involved. Evaluating this work based on turnaround time and transaction success rate, in a real-time cloud environment, it is seen that the cloud's elasticity is so enhanced that it successfully accommodates its users' additional demands by the fastest means possible.