From a broad perspective, we study issues related to implementation, testing, and experimentation in the context of geometric algorithms. Our focus is on the effect of quality of implementation on experimental results. More concisely, we study algorithms that compute convex hulls for a multiset of points in the plane. We introduce several improvements to the implementations of the studied algorithms: plane-sweep, torch, quickhull, and throw-away. With a new set of space-efficient implementations, the experimental results—in the integer-arithmetic setting—are different from those of earlier studies. From this, we conclude that utmost care is needed when doing experiments and when trying to draw solid conclusions upon them.