We generalize Quillen's F -isomorphism theorem, Quillen's stratification theorem, the stable transfer, and the finite generation of cohomology rings from finite groups to homotopical groups. As a consequence, we show that the category of module spectra over C * (B G, Fp) is stratified and costratified for a large class of p-local compact groups G including compact Lie groups, connected p-compact groups, and p-local finite groups, thereby giving a support-theoretic classification of all localizing and colocalizing subcategories of this category. Moreover, we prove that p-compact groups admit a homotopical form of Gorenstein duality.