Experimental and
theoretical studies indicate that resveratrol
(RSV, dietary polyphenol that effectively reduces cellular oxidative
stress) is a good scavenger of hydroxyl, alkoxyl, and peroxyl radicals
in homogeneous systems. However, the role of RSV as a chain-breaking
antioxidant is still questioned. Here, we describe pH dependent effectiveness
of RSV as an inhibitor of peroxidation of methyl linoleate in Triton
X-100 micelles and in 1,2-dimyristoyl-
sn
-glycero-3-phosphocholine
(DMPC) liposomes, with the best effectiveness at pH 6 (stoichiometric
factors,
n
, are 4.9 and 5.6, and the rate constants
for reaction with peroxyl radicals,
k
inh
, are 1200 and 3300 M
–1
s
–1
in
micellar and liposomal systems, respectively). We propose the mechanism
in which RSV-derived radicals are coupled to dimers with recovered
ability to trap lipidperoxyl radicals. The formation of such dimers
is facilitated due to increased local concentration of RSV at the
lipid–water interface. Good synergy of RSV with α-tocopherol
analogue in micelles and liposomes is in contrast to the previously
reported lack of synergy in non-polar solvents; however, the increased
persistency of tocopheroxyl radicals in dispersed lipid/water systems
and proximal localization of both antioxidants greatly facilitate
the possible recovery of α-TOH by RSV.