Engineering synthetic cells has a broad appeal, from
understanding
living cells to designing novel biomaterials for therapeutics, biosensing,
and hybrid interfaces. A key prerequisite to creating synthetic cells
is a three-dimensional container capable of orchestrating biochemical
reactions. In this study, we present an easy and effective technique
to make cell-sized porous containers, coined actinosomes, using the
interactions between biomolecular condensates and the actin cytoskeleton.
This approach uses polypeptide/nucleoside triphosphate condensates
and localizes actin monomers on their surface. By triggering actin
polymerization and using osmotic gradients, the condensates are transformed
into containers, with the boundary made up of actin filaments and
polylysine polymers. We show that the guanosine triphosphate (GTP)-to-adenosine
triphosphate (ATP) ratio is a crucial parameter for forming actinosomes:
insufficient ATP prevents condensate dissolution, while excess ATP
leads to undesired crumpling. Permeability studies reveal the porous
surface of actinosomes, allowing small molecules to pass through while
restricting bigger macromolecules within the interior. We show the
functionality of actinosomes as bioreactors by carrying out
in vitro
protein translation within them. Actinosomes are
a handy addition to the synthetic cell platform, with appealing properties
like ease of production, inherent encapsulation capacity, and a potentially
active surface to trigger signaling cascades and form multicellular
assemblies, conceivably useful for biotechnological applications.