Dendritic spines receive most synaptic inputs in the forebrain. Their morphology, with a spine head isolated from the dendrite by a slender neck, indicates a potential role in isolating inputs. Indeed, biochemical compartmentalization occurs at spine heads because of the diffusional bottleneck created by the spine neck. Here we investigate whether the spine neck also isolates inputs electrically. Using two-photon uncaging of glutamate on spine heads from mouse layer-5 neocortical pyramidal cells, we find that the amplitude of uncaging potentials at the soma is inversely proportional to neck length. This effect is strong and independent of the position of the spine in the dendritic tree and size of the spine head. Moreover, spines with long necks are electrically silent at the soma, although their heads are activated by the uncaging event, as determined with calcium imaging. Finally, second harmonic measurements of membrane potential reveal an attenuation of somatic voltages into the spine head, an attenuation directly proportional to neck length. We conclude that the spine neck plays an electrical role in the transmission of membrane potentials, isolating synapses electrically.second harmonic ͉ electrical isolation ͉ uncaging ͉ cortex ͉ glutamate T he dendritic spine is a ubiquitous feature in the nervous system, whose function is still poorly understood and heavily investigated (1). Spines are recipients of excitatory inputs in many neurons, including pyramidal cells (2), but excitatory inputs in nonspiny neurons contact dendritic shafts. Therefore, rather than just serving as recipients of inputs, spines likely perform a specific function with those inputs. Indeed, spines are calcium compartments and can therefore restrict local biochemical reactions to single inputs (3, 4). Nevertheless, nonspiny neurons can also perform similar calcium compartmentalization (5, 6), so it is conceivable that spines could implement an additional function.Theoretical work, spanning several decades, has proposed that spines could play an important role in altering synaptic potentials (7-12) (for a recent review, see ref. 13). Because of the resistance of the spine neck, spines could electrically isolate inputs and thus prevent input resistance variations in the dendrite during synaptic transmission (8). Thus, excitatory synaptic potentials could be filtered when they reach the dendrite (8-10, 12).The resistance of the spine neck, a crucial variable in ascertaining the electrical function of the spine, has never been measured. Estimates made from passive cable models (14) or diffusional coupling (15) would make its value too low to significantly filter synaptic potentials. At the same time, recent diffusional estimates indicate that neck resistances could be higher (16). Indeed, in our recent work examining input integration, we found that potentials onto spines sum linearly, whereas depolarizations on dendritic shafts shunt each other (R.A., K.B.E., and R.Y., unpublished work). Thus, our data would imply that spines isolate input...