BackgroundRabies is a major zoonotic disease affecting humans, domestic and wildlife mammals. Cattle are the most important domestic animals impacted by rabies virus in the New World, leading to thousands of cattle deaths per year and eliciting large economic losses. In the New World, virus transmission in cattle is primarily associated with Desmodus rotundus, the common vampire bat. This study analyses the association of weather fluctuations and the El Niño Southern Oscillation (ENSO), with the occurrence and magnitude, in terms of associated mortality, of cattle rabies outbreaks. Data from the 100 cattle rabies outbreaks recorded between 1985 and 2016 in Costa Rica were analyzed. Periodograms for time series of rabies outbreaks and the El Niño 4 index were estimated. Seasonality was studied using a seasonal boxplot. The association between epidemiological and climatic time series was studied via cross wavelet coherence analysis. Retrospective space-time scan cluster analyses were also performed. Finally, seasonal autoregressive time series models were fitted to study linear associations between monthly number of outbreaks, monthly mortality rates and the El Niño 4 index, temperature, and rainfall.ResultsLarge rabies mortality occurred towards the Atlantic basin of the country. Outbreak occurrence and size were not directly associated with ENSO, but were sensitive to weather variables impacted by ENSO. Both, ENSO phases and rabies outbreaks, showed a similar 5 year period in their oscillations. Cattle rabies mortality and outbreak occurrence increased with temperature, whereas outbreak occurrence decreased with rainfall. These results suggest that special weather conditions might favor the occurrence of cattle rabies outbreaks.ConclusionsFurther efforts are necessary to articulate the mechanisms underpinning the association between weather changes and cattle rabies outbreaks. One hypothesis is that exacerbation of cattle rabies outbreaks might be mediated by impacts of weather conditions on common vampire bat movement and access to food resources on its natural habitats. Further eco-epidemiological field studies could help to understand rabies virus transmission ecology, and to propose sound interventions to control this major veterinary public health problem.Electronic supplementary materialThe online version of this article (10.1186/s12917-018-1588-8) contains supplementary material, which is available to authorized users.