Rapidly evolving technologies and applications of mobile devices inevitably increase the power demands on the battery. However, the development of batteries can hardly keep pace with the fast-growing demands, leading to short battery life, which becomes the top complaints from customers. In this article, we investigate a novel energy supply technology, fuel cell (FC), and leverage its advantages of providing long-term energy storage to build a hybrid FC-battery power system. Therefore, mobile device operation time is dramatically extended, and users are no longer bothered by battery recharging. We examine real-world smartphone usage data and find that a naive hybrid power system cannot meet many users’ highly diversified power demands. We thus propose an OS-level power management policy that reduces the device power consumption for each power peak to solve this mismatch. This technique trades the quality-of-service (QoS) for a larger FC ratio in the system and thus much longer device operation time. We further observe that the user’s personality largely determines his/her satisfaction with the QoS degradation and the operation time extension. Thus, applying a hybrid system with fixed configuration (i.e., peak throttling level coupled with corresponding FC/battery ratio) fails to satisfy every user. We then explore customized hybrid system configuration based on each individual user’s personality to deliver the optimal satisfaction for him/her. The experimental results show that our personality-aware hybrid FC-battery solution can achieve 4× longer operation time and 25% higher satisfaction score compared to the common setting for state-of-the-art mobile devices.