“…Despite recent advances in the Bayesian estimation of evidence-accumulation models, model comparison continues to rely on suboptimal procedures, such as posterior parameter inference based on complex models where separate model parameters are estimated for each experimental condition. In this approach, differences between parameters are often evaluated using posterior p values (e.g., Klauer, 2010;Matzke, Dolan, Batchelder, & Wagenmakers, 2015;Matzke, Hughes, Badcock, Michie, & Heathcote, 2017;Matzke, Boehm, & Vandekerckhove, 2018;Smith & Batchelder, 2010;Strickland et al, 2018;Tilman, Osth, van Ravenzwaaij, & Heathcote, 2017;Tilman, Strayer, Eidels, & Heathcote, 2017;Osth, Jansson, Dennis, & Heathcote, 2018). Posterior parameter inference has at least three limitations.…”