Low probability of intercept (LPI) radar signals are widely used in electronic countermeasures due to their low power and large bandwidth. However, they are susceptible to interference from noise, posing challenges for accurate identification. To address this issue, we propose an LPI radar signal recognition method based on feature enhancement with deep metric learning. Specifically, time-domain LPI signals are first transformed into time–frequency images via the Choi–Williams distribution. Then, we propose a feature enhancement network with attention-based dynamic feature extraction blocks to fully extract the fine-grained features in time–frequency images. Meanwhile, we introduce deep metric learning to reduce noise interference and enhance the time–frequency features. Finally, we construct an end-to-end classification network to achieve the signal recognition task. Experimental results demonstrate that our method obtains significantly higher recognition accuracy under a low signal-to-noise ratio compared with other baseline methods. When the signal-to-noise ratio is −10 dB, the successful recognition rate for twelve typical LPI signals reaches 94.38%.