Left atrial (LA) imaging is still not routinely used for diagnosis and risk stratification, although recent studies have emphasized its importance as an imaging biomarker. Cardiovascular magnetic resonance is able to evaluate LA structure and function, metrics that serve as early indicators of disease, and provide prognostic information, e.g. regarding diastolic dysfunction, and atrial fibrillation (AF). MR angiography defines atrial anatomy, useful for planning ablation procedures, and also for characterizing atrial shapes and sizes that might predict cardiovascular events, e.g. stroke. Long-axis cine images can be evaluated to define minimum, maximum, and pre-atrial contraction LA volumes, and ejection fractions (EFs). More modern feature tracking of these cine images provides longitudinal LA strain through the cardiac cycle, and strain rates. Strain may be a more sensitive marker than EF and can predict post-operative AF, AF recurrence after ablation, outcomes in hypertrophic cardiomyopathy, stratification of diastolic dysfunction, and strain correlates with atrial fibrosis. Using high-resolution late gadolinium enhancement (LGE), the extent of fibrosis in the LA can be estimated and post-ablation scar can be evaluated. The LA LGE method is widely available, its reproducibility is good, and validations with voltage-mapping exist, although further scan–rescan studies are needed, and consensus regarding atrial segmentation is lacking. Using LGE, scar patterns after ablation in AF subjects can be reproducibly defined. Evaluation of ‘pre-existent’ atrial fibrosis may have roles in predicting AF recurrence after ablation, predicting new-onset AF and diastolic dysfunction in patients without AF. LA imaging biomarkers are ready to enter into diagnostic clinical practice.