2015
DOI: 10.1088/1742-6596/582/1/012063
|View full text |Cite
|
Sign up to set email alerts
|

Radial Hilbert Transform in terms of the Fourier Transform applied to Image Encryption

Abstract: In the present investigation, a mathematical algorithm under Matlab platform using Radial Hilbert Transform and Random Phase Mask for encrypting digital images is implemented. The algorithm is based on the use of the conventional Fourier transform and two random phase masks, which provide security and robustness to the system implemented. Random phase masks used during encryption and decryption are the keys to improve security and make the system immune to attacks by program generation phase masks.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
4

Year Published

2016
2016
2024
2024

Publication Types

Select...
4
2
1

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(7 citation statements)
references
References 8 publications
0
3
0
4
Order By: Relevance
“…Here, Lorenz chaotic mapping was used and it was shown in formula (1). Here, we put the original image information as 1 x into the formula (1), and generate other three variables 2 x , 3 x , 4 x by using Lorenz chaotic mapping.…”
Section: Chaotic Scrambling Processmentioning
confidence: 99%
See 1 more Smart Citation
“…Here, Lorenz chaotic mapping was used and it was shown in formula (1). Here, we put the original image information as 1 x into the formula (1), and generate other three variables 2 x , 3 x , 4 x by using Lorenz chaotic mapping.…”
Section: Chaotic Scrambling Processmentioning
confidence: 99%
“…Image encryption can make the attacker and the translator not obtain the original image information. At the beginning of the image encryption technology development, stream cipher and matrix scrambling were used more [3][4]. But these encryption methods are so simple that decryption process is vulnerable to decode by attacker.…”
Section: Introductionmentioning
confidence: 99%
“…Las técnicas de encriptación de imágenes utilizan algunas herramientas matemáticas relacionadas con el procesado de señal, tales como las transformadas de Fourier, Fresnel, Fourier fraccionaria, Hartley, Gyrator, Hilbert radial y Wavelet, entre otras transformadas, con el objetivo de codificar la imagen a encriptar en un ruido aleatorio (Chen & Zhao, 2006;Millán & Pérez-Cabré, 2011;Morales et al, 2015;Ozaktas et al, 2001;Pei & Ding, 2002;Qin & Pen, 2010;Refregier & Javidi, 1995;Rodrigo et al, 2007;Situ & Zhang, 2004;Towghi et al, 1999;Unnikrishnan et al, 2000;Vilardy et al, 2011;Vilardy et al, 2012;Vilardy et al, 2013a;Vilardy et al, 2013b;Vilardy et al, 2014a;Vilardy et al, 2014b;Vilardy et al, 2017;Zhao et al, 2008). Existen sistemas de encriptación de imágenes basados en la transformada de Fourier fraccionaria (fractional Fourier transform, FrFT) (Unnikrishnan et al, 2000;Vilardy et al, 2014b) o la transformada de Hartley fraccionaria (fractional Hartley transform, FrHT) (Vilardy et al, 2013a;Zhao et al, 2008), estas transformadas fraccionarias mejoran la seguridad de los sistemas de encriptación debido a que los órdenes fraccionarios de estas transformadas representan nuevas claves adicionales (Millán & Pérez-Cabré, 2011).…”
Section: Introductionunclassified
“…Las técnicas de encriptación de imágenes utilizan algunas herramientas matemáticas relacionadas con el procesado de señal, tales como las transformadas de Fourier, Fresnel, Fourier fraccionaria, Hartley, Gyrator, Hilbert radial y Wavelet, entre otras transformadas, con el objetivo de codificar la imagen a encriptar en un ruido aleatorio (Chen & Zhao, 2006;Millán & Pérez-Cabré, 2011;Morales et al, 2015;Ozaktas et al, 2001;Pei & Ding, 2002;Qin & Pen, 2010;Refregier & Javidi, 1995;Rodrigo et al, 2007;Situ & Zhang, 2004;Towghi et al, 1999;Unnikrishnan et al, 2000;Vilardy et al, 2011;Vilardy et al, 2012;Vilardy et al, 2013a;Vilardy et al, 2013b;Vilardy et al, 2014a;Vilardy et al, 2014b;Vilardy et al, 2017;Zhao et al, 2008). Existen sistemas de encriptación de imágenes basados en la transformada de Fourier fraccionaria (fractional Fourier transform, FrFT) (Unnikrishnan et al, 2000;Vilardy et al, 2014b) o la transformada de Hartley fraccionaria (fractional Hartley transform, FrHT) (Vilardy et al, 2013a;Zhao et al, 2008), estas transformadas fraccionarias mejoran la seguridad de los sistemas de encriptación debido a que los órdenes fraccionarios de estas transformadas representan nuevas claves adicionales (Millán & Pérez-Cabré, 2011).…”
Section: Introductionunclassified