Abstract:A radial point for a finite set P in the plane is a point q ∈ P with the property that each line connecting q to a point of P passes through at least one other element of P. We prove a conjecture of Pinchasi, by showing that the number of radial points for a non-collinear n-element set P is O(n). We also present several extensions of this result, generalizing theorems of Beck, Szemerédi and Trotter, and Elekes on the structure of incidences between points and lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.