A large eddy simulation of the flow around a NACA 0012 airfoil at zero incidence is performed at a chord-based Reynolds number of 500,000 and a Mach number of 0.22. The aim is to show that high-order numerical schemes can successfully be used to perform direct acoustic computations of compressible transitional flow on curvilinear grids. At a Reynolds number of 500,000, the boundary layers around the airfoil transition from an initially laminar state to a turbulent state before reaching the trailing edge. Results obtained in the large eddy simulation show a well-placed transition zone and turbulence levels in the boundary layers that are in agreement with experimental data. Furthermore, the radiated acoustic field is determined directly by the large eddy simulation, without the use of an acoustic analogy. Third-octave acoustic spectra are compared favorably with experimental data.