2020
DOI: 10.1016/j.solmat.2020.110551
|View full text |Cite
|
Sign up to set email alerts
|

Radiation hardness and post irradiation regeneration behavior of GaInAsP solar cells

Abstract: Recent developments have renewed the demand for solar cells with increased tolerance to radiation damage. To investigate the specific irradiation damage of 1 MeV electron irradiation in GaInAsP lattice matched to InP for varying In and P contents, a simulation based analysis is employed: by fitting the quantum efficiency and open-circuit voltage simultaneously before and after irradiation, the induced changes in lifetime are detected. Furthermore, the reduction of irradiation damage during regeneration under t… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

2
23
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 15 publications
(27 citation statements)
references
References 19 publications
2
23
0
2
Order By: Relevance
“…Table 1 summarizes the crucial parameters of the electrical simulation: the minority carrier lifetimes for the three p‐type absorbers. The used electron lifetime for GaAs at low injection τid (e − ) lies between the values from Grunginskie et al 22 and Lang et al 20 For GaInAs with increasing In fraction, we observed a slightly stronger degradation. The GaInP subcell is the radiation hardest subcell due to the high photon absorption rate in GaInP and relatively small irradiation damage.…”
Section: Cell Growth and Simulation Methodssupporting
confidence: 81%
See 1 more Smart Citation
“…Table 1 summarizes the crucial parameters of the electrical simulation: the minority carrier lifetimes for the three p‐type absorbers. The used electron lifetime for GaAs at low injection τid (e − ) lies between the values from Grunginskie et al 22 and Lang et al 20 For GaInAs with increasing In fraction, we observed a slightly stronger degradation. The GaInP subcell is the radiation hardest subcell due to the high photon absorption rate in GaInP and relatively small irradiation damage.…”
Section: Cell Growth and Simulation Methodssupporting
confidence: 81%
“…Electron irradiation mainly causes point defects by collisions with atoms of the crystal lattice and the following creation of vacancy‐interstitial pairs 15 . In the simulation, these point defects can be described with the Shockley–Read–Hall (SRH) formalism and a corresponding minority carrier lifetime limitation due to irradiation induced defects τid at low injection 20 . The EOL SRH lifetimes τEOL is calculated by combining the BOL SRH lifetime and τid from previous experiments 20,21 and irradiation experiments at single junction solar cells by τEOLgoodbreak=1τitalicBOnormalL+1τid1. …”
Section: Cell Growth and Simulation Methodsmentioning
confidence: 99%
“…We reported light-induced degradation which occurs when a solar cell is for the first time exposed to solar radiation. Study of stability of GaAs-based structures during a short period (1–2 days) was recently investigated by Lang et al [ 19 ]. This is first stage of the panel “tune-up” or “initial degradation”.…”
Section: Resultsmentioning
confidence: 99%
“…К настоящему времени твердые растворы соединений A 3 B 5 получили широкое распространение в технологии ФЭП и применяются для p−n-переходов, а также в качестве широкозонных оптических окон, потенциальных барьеров и буферов для согласования периодов кристаллических решеток в многослойных гетероструктурах [1][2][3][4]. Физическая природа твердых растворов позволяет создавать изопериодные гетероструктуры [5][6][7], в которых рассогласование периодов кристаллических решеток слоя и подложки a = 0, и варизонные гетероструктуры [8][9][10], в которых ширина запрещенной зоны слоя изменяется по его толщине. Важным моментом при получении варизонных структур является создание на первой стадии роста изопериодного переходного слоя на гетерогранице для уменьшения ее дефектности, обусловленной термическими и упругими напряжениями несоответствия.…”
unclassified