SHORT ABSTRACT
Local drug delivery to the submandibular glands is of interest in understanding salivary gland biology and for the development of novel therapeutics. We present an updated and detailed retroductal injection protocol, designed to improve delivery accuracy and experimental reproducibility. The application presented herein is the delivery of polymeric nanoparticles.
LONG ABSTRACT
Two common goals of salivary gland therapeutics are prevention and cure of tissue dysfunction following either autoimmune or radiation injury. By locally delivering bioactive compounds to the salivary glands, greater tissue concentrations can be safely achieved versus systemic administration. Furthermore, off target tissue effects from extra-glandular accumulation of material can be dramatically reduced. In this regard, retroductal injection is a widely used method for investigating both salivary gland biology and pathophysiology. Retroductal administration of growth factors, primary cells, adenoviral vectors, and small molecule drugs has been shown to support gland function in the setting of injury. We have previously shown the efficacy of a retroductally injected nanoparticle-siRNA strategy to maintain gland function following irradiation. Here, a highly effective and reproducible method to administer nanomaterials to the murine submandibular gland through Wharton’s duct is detailed (Figure 1). We describe accessing the oral cavity and outline the steps necessary to cannulate Wharton’s duct, with further observations serving as quality checks throughout the procedure.