The extraction of (135)Cs from high activity waste arising from reprocessing of spent fuel can be achieved by using calix[4]arene crown compounds. The radiolytic degradation of calix[4]arene crowns as well as their solvent, o-nitrophenyloctyl ether (NPOE), was studied using electrospray ionization mass spectrometry (ESI-MS) (that formed Cs(+) or Na(+) adducts) in nitric acid, as well as by chemical ionization tandem mass spectrometry (MS/MS) experiments. The structures of major degradation products were identified with MS and specifically labelled nitric acid. Although NPOE and calix[4]arene crowns alone are relatively stable, under simulated conditions resembling the real industrial processes involving radiolysis in the presence of nitric acid, several products resulting from nitration and oxidation were observed.