The neutron capture rates and temperature dependent stellar beta decay rates of Mo isotopes are investigated within the framework of the statistical code TALYS v1.96 and the proton neutron quasi particle random phase approximation (pn-QRPA) model. The Maxwellian average cross-section (MACS) and neutron capture rates for the
Mo(n,γ)
Mo radiative capture process are analyzed within the framework of the statistical code TALYS v1.96 based on the phenomenological nuclear level density model and gamma strength functions. The present model-based computations for the MACS are comparable to the existing measured data. The sensitivity of stellar weak interaction rates to various densities and temperatures is investigated within the framework of the pn-QRPA model. Particular attention is paid to the impact of thermally filled excited states in the decaying nuclei (
Mo) on electron emission and positron capture rates. Furthermore, we compare the neutron capture rates and stellar beta decay rates. It is found that neutron capture rates are higher than stellar beta decay rates at both lower and higher temperatures.