Perfluoroalkylated (hetero)arenes represent an extremely important family of molecules commonly utilized in many areas such as medicinal chemistry, agrochemistry and material sciences. Due to their unique properties, they have attracted significant interest from synthetic chemists and various methods have been developed for their synthesis. Among them, the direct perfluoroalkylation of C(sp 2 )À H bonds in (hetero)arenes is one of the most attractive and straightforward ones, provided that it proceeds with high levels of regioselectivity. In this review article, a comprehensive overview of advances in this field is presented, with a special focus on the reaction mechanisms involved in these transformations and their regioselectivity. All methods available have been classified according to the nature of the perfluoroalkyl chain introduced, trifluoromethylation reactions being overviewed in a separate section, and to the nature of the reagents/catalysts required.