In this paper, the particle swarm optimization (PSO) method with dynamic generation of biasing factors is used to determine the optimal particle size, maximize cell spectral efficiency (CSE) and balance the load in 5G networks. This work studies two distinct interference scenarios: in the first approach, CSE is calculated with varying numbers of users, when different radio services are used by each tier (when several radio access technologies are used), and when interference is received by the consumer only from the same tier base stations (BSs). In the second approach, interference is created when all levels use the same radio services and interference from BSs belonging to the same tier and other tiers is received by the consumer. Simulation results show that the cell-less network performs better than the cellular network in terms of maximizing CSE and balancing the load.