One of the fundamental requirements for dual purpose casks, which are used for the transport and interim storage of spent fuel assemblies, is the safe removal of the resulting decay heat. To ensure this the temperature fields are determined using numerical methods. However, their modelling is complex and the computation time-consuming.In order to accelerate this thermal assessment, we have developed z88ENSI, an independent simulation tool based on finite element analysis. With regard to the modelling, various parameters can be varied quickly with our newly designed mesh manipulation procedure. Concerning the computation time, we developed and implemented an approach for calculating three-dimensional temperature fields, based on an already existing two-dimensional method which lacked precision. We accelerate the calculation by using extended thermal gap constraints, which depict the thermal behaviour of the non-meshed, gas-filled gaps inside the cask. We validate the results of our calculation tool by comparing them with those generated with Ansys. The results of the comparison temperatures differ between −0.8% and 3.7%. The speedup of z88ENSI for the specific validation setting is between 6.9 and 15.0.