Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The article contains sections titled: 1. Introduction 1.1. A Strategy Appropriate to Trace Analysis 1.2. Avoidance of Systematic Errors 1.2.1. Trace Losses and Contamination 1.2.2. Uncertainty 2. Sample Preparation and Digestion in Inorganic Analysis 2.1. Sample Treatment after the Sampling Process 2.1.1. Stabilization, Drying, and Storage 2.1.2. Homogenization and Aliquoting 2.1.3. Requirements with Respect to Materials and Chemicals 2.2. Sample‐Preparation Techniques; General Considerations 2.2.1. Special Factors Associated with Microwave‐Assisted Digestion 2.2.2. Safety Considerations 2.3. Wet Digestion Techniques 2.3.1. Wet Digestion at Atmospheric Pressure 2.3.2. Pressure Digestion 2.3.2.1. Thermally Convective Pressure Digestion 2.3.2.2. Microwave‐Assisted Pressure Digestion 2.4. “Dry” Digestion Techniques 2.4.1. Combustion in Air 2.4.2. Combustion in Oxygen 2.4.3. Cold‐Plasma Ashing 2.4.4. Fusion 2.5. Illustrative Examples 2.5.1. Sample Preparation as a Function of Analytical Method 2.5.2. Combined Use of Multiple Decomposition Techniques 2.5.3. Comparative Merits of the Various Sample‐Preparation Techniques 2.5.4. Decomposition Procedures for Determining Nonmetals 2.6. Evaluation Criteria 2.6.1. Completeness 2.6.2. Uncertainty 2.6.3. Time Factors 2.6.4. The Final Result 2.7. Concentration and Separation of Inorganic Trace Materials 2.8. Automation and Direct Analysis 2.8.1. Automation 2.8.2. Direct Analysis 2.9. Analysis of Element Species 3. Sample Preparation in Organic Analysis 3.1. Sample Treatment after the Sampling Process 3.1.1. Stabilization, Drying, and Storage 3.1.2. Homogenization and Aliquoting 3.1.3. Requirements with Respect to Materials and Chemicals 3.2. Separation of the Analyte 3.2.1. Hydrolysis 3.2.2. Liquid ‐ Liquid Extraction 3.2.3. Soxhlet Extraction 3.2.4. Microwave‐Assisted Solvent Extraction 3.2.5. Supercritical Fluid Extraction (SFE) 3.2.6. Solid‐Phase Extraction (SPE) 3.2.7. Solid‐Phase Microextraction (SPME) 3.2.8. Stir‐Bar Adsorptive Extraction (SBSE) 3.2.9. Miscellaneous Techniques 3.3. Headspace Techniques 3.3.1. Static Headspace Technique 3.3.2. Dynamic Headspace Technique (Purge and Trap) 3.4. Determination of Trace Organic Materials in Air Samples 3.5. Analyte Concentration 3.6. Derivatization 3.7. Coupled Techniques Trace analysis is a very relevant and applications‐oriented branch of analytical chemistry. The sample preparation for trace analysis must be custom‐tailored to the problem at hand. Systematic errors can arise by contact with vessel materials, reagents, or the ambient atmosphere, as well as any change in chemical or physical state. In inorganic analysis, sample preparation has to meet the requirements for a substantially trouble‐free determination of the analyte. Digestion of the matrix (microwave digestion, wet digestion, dry digestion techniques) and subsequent careful comparison of several decomposition techniques is therefore an essentially important step. Some separation and concentration techniques of the analytes are liquid –liquid extraction, solid‐phase extraction, special precipitation reactions, and electrolytic deposition. The introduction of laboratory robots should make it possible to incorporate a significant degree of automation into the time‐consuming, labor‐intensive area of sample preparation as well, leading to more efficient, reliable, and reproducible sample work‐up. The goal of sample preparation in organic trace analysis is to isolate the analyte from the sample matrix (e.g., liquid‐liquid extraction, Soxhlet extraction, microwave‐assisted solvent extraction, steam distillation) and then concentrate it and convert it into a form suitable for analysis by the selected method. Separation and concentration of an analyte must often be followed by some type of derivatization. Various coupled sample preparation and determination processes are increasingly utilized in trace organic analysis.
The article contains sections titled: 1. Introduction 1.1. A Strategy Appropriate to Trace Analysis 1.2. Avoidance of Systematic Errors 1.2.1. Trace Losses and Contamination 1.2.2. Uncertainty 2. Sample Preparation and Digestion in Inorganic Analysis 2.1. Sample Treatment after the Sampling Process 2.1.1. Stabilization, Drying, and Storage 2.1.2. Homogenization and Aliquoting 2.1.3. Requirements with Respect to Materials and Chemicals 2.2. Sample‐Preparation Techniques; General Considerations 2.2.1. Special Factors Associated with Microwave‐Assisted Digestion 2.2.2. Safety Considerations 2.3. Wet Digestion Techniques 2.3.1. Wet Digestion at Atmospheric Pressure 2.3.2. Pressure Digestion 2.3.2.1. Thermally Convective Pressure Digestion 2.3.2.2. Microwave‐Assisted Pressure Digestion 2.4. “Dry” Digestion Techniques 2.4.1. Combustion in Air 2.4.2. Combustion in Oxygen 2.4.3. Cold‐Plasma Ashing 2.4.4. Fusion 2.5. Illustrative Examples 2.5.1. Sample Preparation as a Function of Analytical Method 2.5.2. Combined Use of Multiple Decomposition Techniques 2.5.3. Comparative Merits of the Various Sample‐Preparation Techniques 2.5.4. Decomposition Procedures for Determining Nonmetals 2.6. Evaluation Criteria 2.6.1. Completeness 2.6.2. Uncertainty 2.6.3. Time Factors 2.6.4. The Final Result 2.7. Concentration and Separation of Inorganic Trace Materials 2.8. Automation and Direct Analysis 2.8.1. Automation 2.8.2. Direct Analysis 2.9. Analysis of Element Species 3. Sample Preparation in Organic Analysis 3.1. Sample Treatment after the Sampling Process 3.1.1. Stabilization, Drying, and Storage 3.1.2. Homogenization and Aliquoting 3.1.3. Requirements with Respect to Materials and Chemicals 3.2. Separation of the Analyte 3.2.1. Hydrolysis 3.2.2. Liquid ‐ Liquid Extraction 3.2.3. Soxhlet Extraction 3.2.4. Microwave‐Assisted Solvent Extraction 3.2.5. Supercritical Fluid Extraction (SFE) 3.2.6. Solid‐Phase Extraction (SPE) 3.2.7. Solid‐Phase Microextraction (SPME) 3.2.8. Stir‐Bar Adsorptive Extraction (SBSE) 3.2.9. Miscellaneous Techniques 3.3. Headspace Techniques 3.3.1. Static Headspace Technique 3.3.2. Dynamic Headspace Technique (Purge and Trap) 3.4. Determination of Trace Organic Materials in Air Samples 3.5. Analyte Concentration 3.6. Derivatization 3.7. Coupled Techniques Trace analysis is a very relevant and applications‐oriented branch of analytical chemistry. The sample preparation for trace analysis must be custom‐tailored to the problem at hand. Systematic errors can arise by contact with vessel materials, reagents, or the ambient atmosphere, as well as any change in chemical or physical state. In inorganic analysis, sample preparation has to meet the requirements for a substantially trouble‐free determination of the analyte. Digestion of the matrix (microwave digestion, wet digestion, dry digestion techniques) and subsequent careful comparison of several decomposition techniques is therefore an essentially important step. Some separation and concentration techniques of the analytes are liquid –liquid extraction, solid‐phase extraction, special precipitation reactions, and electrolytic deposition. The introduction of laboratory robots should make it possible to incorporate a significant degree of automation into the time‐consuming, labor‐intensive area of sample preparation as well, leading to more efficient, reliable, and reproducible sample work‐up. The goal of sample preparation in organic trace analysis is to isolate the analyte from the sample matrix (e.g., liquid‐liquid extraction, Soxhlet extraction, microwave‐assisted solvent extraction, steam distillation) and then concentrate it and convert it into a form suitable for analysis by the selected method. Separation and concentration of an analyte must often be followed by some type of derivatization. Various coupled sample preparation and determination processes are increasingly utilized in trace organic analysis.
New fluorescent molecular sensors based on a calix[4]arene biscrown-6 ether as coordination site and BODIPY derivative as signaling unit were synthesized, and their photophysical properties were characterized. The complexation properties of these sensors with potassium and cesium cations were investigated using both steady-state and time-resolved fluorescence methods. The studies show that the sensitivity with cations depends upon the position of substituted coordination site on the BODIPY core. The complexation with cations does not have much effect on the absorption and emission wavelength when the coordination site (calix[4]arene biscrown-6 ether) is introduced at the meso position of the BODIPY core. In contrast, the same calix[4]arene biscrown-6 ether attached via a styryl linker to the α-position of BODIPY core leads to a sensitive sensor for alkali cations thanks to the better conjugation between the coordination site and the BODIPY core. The complexation of cations induces a hypsochromic shift of the absorption and emission maximums due to the diminution of donor character of the oxygen atoms in the coordination site. The stability constants of complexes with potassium and cesium ion were measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.