2018
DOI: 10.1148/radiol.2018173064
|View full text |Cite
|
Sign up to set email alerts
|

Radiomic Machine Learning for Characterization of Prostate Lesions with MRI: Comparison to ADC Values

Abstract: Purpose To compare biparametric contrast-free radiomic machine learning (RML), mean apparent diffusion coefficient (ADC), and radiologist assessment for characterization of prostate lesions detected during prospective MRI interpretation. Materials and Methods This single-institution study included 316 men (mean age ± standard deviation, 64.0 years ± 7.8) with an indication for MRI-transrectal US fusion biopsy between May 2015 and September 2016 (training cohort, 183 patients; test cohort, 133 patients). Lesion… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

8
156
2
8

Year Published

2019
2019
2021
2021

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 180 publications
(174 citation statements)
references
References 36 publications
8
156
2
8
Order By: Relevance
“…Breast cancer lesions, automatically detected using connected component labeling and adaptive fuzzy region growing algorithm, were classified using radiomic features as benign mass or malignant tumor on digital mammography, dynamic contrast‐enhanced (DCE) MRI, and ultrasound . A radiomic model based on mean apparent diffusion coefficient (ADC), had better accuracy than radiologist assessment for characterization of prostate lesions as clinically significant cancer (Gleason grade group ≥ 2) during prospective MRI interpretation . A deep learning multiparametric MRI transfer learning method has also shown the ability to classify prostate cancer high grade/low or grade .…”
Section: Overview Of Research and Clinical Applications Of Cancer Radmentioning
confidence: 99%
“…Breast cancer lesions, automatically detected using connected component labeling and adaptive fuzzy region growing algorithm, were classified using radiomic features as benign mass or malignant tumor on digital mammography, dynamic contrast‐enhanced (DCE) MRI, and ultrasound . A radiomic model based on mean apparent diffusion coefficient (ADC), had better accuracy than radiologist assessment for characterization of prostate lesions as clinically significant cancer (Gleason grade group ≥ 2) during prospective MRI interpretation . A deep learning multiparametric MRI transfer learning method has also shown the ability to classify prostate cancer high grade/low or grade .…”
Section: Overview Of Research and Clinical Applications Of Cancer Radmentioning
confidence: 99%
“…Und auch in der Bildgebungsforschung kommt es mehr und mehr zu interprofessioneller Zusammenarbeit, etwa zwischen Mediziner und (Medizin-)Physiker und -Informatiker bei Digitalisierungsfragen im Bereich künstlicher Intelligenz, maschinellem Lernen usw. [28,29]. Aus diesem Grund wird nach Ein-schätzung der Autoren die Bildgebung insgesamt künftig eine noch stärkere Vorreiterrolle bei der interprofessionellen Kooperation und Kommunikation in klinischen Forschungsprojekten und -studien einnehmen.…”
Section: Kooperation Der Gesundheitsberufeunclassified
“…Angesichts des täglichen Termindrucks hat es sich darüber hinaus bewährt, Ressourcen für einen studienerfahrenen Mitarbeiter einzuplanen, der als Fachrichtungs-übergreifender Koordinator/Projektmanager studienrelevante Als Folge der zunehmenden Forschungsvernetzung werden bei zukünftigen oftmals multizentrischen klinischen Studi-en natürlicherweise Experten verschiedener Professionen zusammenarbeiten. Schon heute können viele Forschungsprojekte nur dann erfolgreich in die klinische Anwendung und Entwicklung transferiert werden, wenn Mediziner mit Experten aus den Lebenswissenschaften [33,34], der Informatik [28,29], Ökonomie [35] usw. berufsübergreifend kooperieren und kommunizieren.…”
Section: Professionsübergreifende Kommunikation Stärkenunclassified
“…Two datasets were used in this study: first, the ChestX-ray dataset released by the NIH in 2017, containing 112,120 frontal radiographs of 30,805 unique patients [10]. At the time of its publication this dataset comprised 8 disease entities and was later updated to contain 14 pathologies [26].…”
Section: Dataset and Preprocessingmentioning
confidence: 99%
“…The application of Artificial Intelligence (AI) in medicine promises to personalize diagnosis, decision management and therapy based on the combination of patient information with knowledge of thousands of experts and the outcome of billions of patient [1][2][3][4]. In recent years, a lot of scientific effort has focused on applications of AI in medicine with a particularly strong focus on radiology [5][6][7][8][9][10]. Whenever there has been progress towards this vision of an omniscient radiological AI, it has mostly been anticipated by corresponding technical advances in the field of Computer Vision on natural images.…”
Section: Introductionmentioning
confidence: 99%