Background
Acute ischemic stroke (AIS) is a major cause of morbidity and mortality, with hemorrhagic transformation (HT) further worsening outcomes. Traditional scoring systems have limited predictive accuracy for HT in AIS. Recent research has explored machine learning (ML) and deep learning (DL) algorithms for stroke management. This study evaluates and compares the effectiveness of ML and DL algorithms in predicting HT post-AIS, benchmarking them against conventional models.
Methods
A systematic search was conducted across PubMed, Embase, Web of Science, Scopus, and IEEE, initially yielding 1421 studies. After screening, 24 studies met the inclusion criteria. The Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the quality of these studies, and a qualitative synthesis was performed due to heterogeneity in the study design.
Results
The included studies featured diverse ML and DL algorithms, with Logistic Regression (LR), Support Vector Machine (SVM), and Random Forest (RF) being the most common. Gradient boosting (GB) showed superior performance. Median Area Under the Curve (AUC) values were 0.91 for GB, 0.83 for RF, 0.77 for LR, and 0.76 for SVM. Neural networks had a median AUC of 0.81 and convolutional neural networks (CNNs) had a median AUC of 0.91. ML techniques outperformed conventional models, particularly those integrating clinical and imaging data.
Conclusions
ML and DL models significantly surpass traditional scoring systems in predicting HT. These advanced models enhance clinical decision-making and improve patient outcomes. Future research should address data expansion, imaging protocol standardization, and model transparency to enhance stroke outcomes further.