Das radioaktive Edelgas Radon und seine ebenfalls radioaktiven Zerfallsprodukte machen den größten Teil der natürlichen Strahlenbelastung in Deutschland aus. Trotz der Einstufung als krebserregend für Lungenkrebs wird es zur Therapie entzündlicher Krankheiten eingesetzt. Der hauptsächliche Aufnahmemechanismus ist dabei die Inkorporation über die Atmung, wobei Radon auch über die Haut aufgenommen werden kann. Radon wird dabei über das Blut im gesamten Körper verteilt und kann in Gewebe mit hoher Radonlöslichkeit akkumulieren. Die Zerfallsprodukte verbleiben jedoch in der Lunge, zerfallen dort, bevor sie abtransportiert werden können und schädigen das dortige Gewebe. Die Lungendosis wird laut Simulationen zum größten Teil durch die kleinsten Radon-Zerfallsprodukte (< 10 nm) bestimmt, die besonders effektiv im Respirationstrakt anheften. Die erzeugte Dosis ist dabei aufgrund der inhomogenen Anlagerung der Zerfallsprodukte lokal stark variabel. In Simulationen wurden Bifurkationen als Ort besonders hoher Deposition identifiziert, wobei die experimentelle Datenlage zur Deposition kleinster Radon-Zerfallsprodukte eingeschränkt ist. Aufgrund des Anstiegs der Komplexität von Simulationen oder Experimenten wird in den meisten Betrachtungen nicht der oszillatorische Atemzyklus berücksichtigt, sondern lediglich ein einseitig gerichteter Luftstrom betrachtet. Im Rahmen dieser Arbeit wurde ein experimentelles Modell entwickelt und etabliert, das die Messung der Deposition von Radon-Zerfallsprodukten ermöglicht und zwischen drei Größenfraktionen (Freie Zerfallsprodukte: < 10 nm, Cluster: 20-100 nm, Angelagerte Zerfallsprodukte: > 100 nm) unterscheiden kann. Der Luftfluss durch das Modell bildet sowohl die Inhalation als auch die Exhalation ab. Erste Experimente mit dem neu entwickelten Messaufbau konnten die aus Simulationen bekannte erhöhte Deposition der freien Zerfallsprodukte in einer Bifurkation abbilden. Die Vergrößerung des Bifurkationswinkels von 70° auf 180° zeigte lediglich einen minimalen Anstieg in der Größenordnung des Messfehlers. Der dominierende Prozess der Anlagerung der freien Zerfallsprodukte ist die Brown'sche Molekularbewegung, die unabhängig vom Bifurkationswinkel ist. Dennoch kann ein veränderter Winkel die Luftströmung und entstehende Turbulenzen verändern, wodurch die Deposition beeinflusst werden kann. Dies lässt sich jedoch mit dem hier benutzten Messaufbau nicht auflösen. Entgegen der Beobachtungen in der Literatur führte die Erhöhung der Atemfrequenz von 12 auf 30 Atemzüge pro Minute, in den im Rahmen dieser Arbeit durchgeführten Experimenten, zu keiner messbaren Veränderung der Deposition. Diese Beobachtung ist auf die Entstehung gegensätzlicher Effekte zurückzuführen. Einerseits führt eine schnellere Luftströmung zu kürzeren Aufenthaltszeiten der freien Zerfallsprodukte im Modell, wodurch die Deposition unwahrscheinlicher wird. Andererseits entstehen vermehrt sekundäre Strömungen und absolut betrachtet werden mehr Partikel durch das Modell gepumpt. Es ist davon auszugehen, dass sich diese Effekte im hier getesteten Bereich aufheben. Als potentielle Schutzmaßnahme zur Reduktion der Lungendosis konnte im Rahmen dieser Arbeit die Filtereffzienz von Gesichtsmasken (OP-Masken, FFP2 Masken) gegenüber Radon und seinen Zerfallsprodukten bestimmt werden. Während Radon nicht gefiltert wird, wurden die freien Zerfallsprodukte fast vollständig (> 98%) und die Cluster zum größten Teil (≈ 80 %) zurückgehalten. Radon selbst kann im gesamten Organismus verteilt werden und dort in Gewebe akkumulieren. Zur Bestimmung der Dosis wird dabei auf biokinetische Modelle zurückgegriffen. Diese sind von der Qualität ihrer Eingabeparameter abhängig, wobei beispielsweise die Werte zur Verteilung von Radon zwischen Blut und Gewebe auf experimentell gewonnenen Löslichkeitswerten aus Mäusen und Ratten beruhen. Unbekannte Werte werden von der Internationalen Strahlenschutzkommission basierend auf der Gewebezusammensetzung als gewichteter Mittelwert berechnet. In dieser Arbeit wurde die Löslichkeit in humanen Blutproben und wässrigen Lösungen verschiedener Konzentrationen der Blutproteine Hämoglobin und Albumin bestimmt. Es löste sich mehr Radon in Plasma als in Erythrozytenkonzentrat und Vollblut. Die Protein-Lösungen zeigten keine Konzentrationsabhängigkeit der Löslichkeit, sondern lediglich in hitzedenaturiertem Hämoglobin wurde eine niedrigere Löslichkeit gemessen. Basierend auf diesen Beobachtungen, sollte die These überprüft werden, ob sich die Löslichkeit einer Mischung als gewichteter Mittelwert der einzelnen Löslichkeiten berechnen lässt. Daher wurden diese in einer Mischung aus zwei Flüssigkeiten (1-Pentanol, Ölsäure) bestimmt. Die experimentell bestimmte Löslichkeit war dabei fast doppelt so groß wie der berechnete Wert. Dieser Unterschied kann dadurch zustande kommen, dass bei einer Berechnung basierend auf der Zusammensetzung die Wechselwirkungen zwischen den Lösungsmitteln vernachlässigt werden. Dies verdeutlicht die Notwendigkeit experimenteller Daten zur Verteilung und Lösung von Radon in verschiedenem Gewebe.