Cumulative stress energy in active seismic regions caused by tectonic forces creates various earthquake precursors. This energy transformation may result in enhanced transient thermal infrared (TIR) emission, which can be detected through satellites equipped with thermal sensors like MODIS (Terra/Aqua) and AVHRR (NOAA). Satellite time-series data, coupled with ground based observations, where available, can enable scientists to survey pre-earthquake signals in the areas of strong tectonic activity. This paper presents observations made using time series MODIS and NOAA-AVHRR satellite data for derived multi-parameters including land surface temperature (LST), outgoing long-wave radiation (OLR), and mean air temperature (AT) for the moderate, 5.9 magnitude earthquake, which took place on the 27 th of October, 2004, inthe seismic region of Vrancea, in Romania. Anomalous thermal infrared signals, reflected by a rise of several degrees celsius ( • C) in LSTs, and higher OLR values were seen several days before the earthquake. AT values in the epicentral area also increased almost two days prior to the earthquake and intensified three days after the main shock.Increases in LSTs and OLR disappeared three days after the main shock. The survey and joint analysis of geospatial and in-situ geophysical information on land surface temperatures and outgoing long-wave radiation provides new insights into the field of seismic hazard assessment in Vrancea, a significant area of tectonic activity in Romania and Europe.