Forward body biasing (FBB) has often been exploited in the literature for improving the performance of both analog and digital building blocks. Recent works have explored the application of FBB variants to mixed-signal electronics and in particular to dynamic comparators, where these techniques can help to relax the trade-off between speed and power consumption at medium and low supply voltages. However, the literature lacks a structured analysis of the solutions that have been developed and of the trade-offs that affect them. This work attempts to fill the gap by providing a survey of the application of FBB techniques to dynamic comparators. The analysis focuses on the two most popular dynamic comparator topologies, the Strong Arm latch and Elzakker’s comparator. Several FBB variants are examined from a theoretical point of view. Moreover, the benefits and the limitations of the different approaches are assessed in terms of the main figures of merit through a systematic campaign of simulations in a 55 nm CMOS technology.