2024
DOI: 10.21203/rs.3.rs-4023897/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

RAIN: a Machine Learning-based identification for HIV-1 bNAbs

Laurent Perez,
Mathilde Foglierini

Abstract: Broadly neutralizing antibodies (bNAbs) are promising candidates for the treatment and prevention of HIV-1 infection. Despite their critical importance, automatic detection of HIV-1 bNAbs from immune repertoire is still lacking. Here, we developed a straightforward computational method for Rapid Automatic Identification of bNAbs (RAIN) based on Machine Learning methods. In contrast to other approaches using one-hot encoding amino acid sequences or structural alignment for prediction, RAIN uses a combination of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 78 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?