In this paper, a dynamic model of computation based on the Universal Turing Machine is proposed. This model is capable of applying runtime code modifications for 3-symbol deterministic Turing Machines at runtime and requires a decomposition of the simulated machine into parts called subtasks. The algorithm for performing runtime changes is considered, and the ability to apply runtime changes is studied through computer simulations. Theoretical properties of the proposed model, including computational power as well as time and space complexity, are studied and proven. Connections between the proposed model and Oracle Machines are discussed. Moreover, a possible method of implementation in real-life systems is proposed.