Background: Cope's gray treefrog, Dryophytes chrysoscelis, withstands the physiological challenges of corporeal freezing, partly by accumulating cryoprotective compounds of hepatic origin, including glycerol, urea, and glucose. We hypothesized that expression of genes related to cryoprotectant mobilization and stress tolerance would be differentially regulated in response to cold. Using high-throughput RNA sequencing (RNA-Seq), a hepatic transcriptome was generated for D. chrysoscelis, and gene expression was compared among frogs that were warmacclimated, cold-acclimated, and frozen. Results: A total of 159,556 transcripts were generated; 39% showed homology with known transcripts, and 34% of all transcripts were annotated. Gene-level analyses identified 34,936 genes, 85% of which were annotated. Cold acclimation induced differential expression both of genes and non-coding transcripts; freezing induced few additional changes. Transcript-level analysis followed by gene-level aggregation revealed 3582 differentially expressed genes, whereas analysis at the gene level revealed 1324 differentially regulated genes. Approximately 3.6% of differentially expressed sequences were non-coding and of no identifiable homology. Expression of several genes associated with cryoprotectant accumulation was altered during cold acclimation. Of note, glycerol kinase expression decreased with cold exposure, possibly promoting accumulation of glycerol, whereas glucose export was transcriptionally promoted by upregulation of glucose-6-phosphatase and downregulation of genes of various glycolytic enzymes. Several genes related to heat shock protein response, DNA repair, and the ubiquitin proteasome pathway were upregulated in cold and frozen frogs, whereas genes involved in responses to oxidative stress and anoxia, both potential sources of cellular damage during freezing, were downregulated or unchanged.