The paper argues that universal approaches to infiltration and drainage in permeable media pivoting around capillarity and leading to dual porosity, non-equilibrium, or preferential flow need to be replaced by a dual process approach. One process has to account for relatively fast infiltration and drainage based on Newton's viscous shear flow, while the other one draws from capillarity and is responsible for storage and relatively slow redistribution of soil water. Already in the second half of the 19th Century were two separate processes postulated, however, Buckingham's and Richards' apparent universal capillarity-based approaches to the flow and storage of water in soils dominated. The paper introduces the basics of Newton's shear flow in permeable media. It then presents experimental applications, and explores the relationships of Newton's shear flow with Darcy's law, Forchheimer's and Richards' equations, and finally extends to the transport of solutes and particles.