The coordination behavior of the antiulcer drug cimetidine (cime) towards transition metal ions was investigated. The synthesis and characterization of [Cr(cime)<sub>2</sub>Cl<sub>2</sub>]Cl·3H<sub>2</sub>O, [Co(cime)Cl<sub>2</sub>]·5H<sub>2</sub>O, [Co(cime)<sub>3</sub>Cl]Cl·3H<sub>2</sub>O, [Ni(cime)Cl<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·H<sub>2</sub>O, [Cu(cime)Cl<sub>2</sub>]·2H<sub>2</sub>O, [Cu(cime)<sub>2</sub>Cl(H<sub>2</sub>O)]Cl·H<sub>2</sub>O, [Cu(cime)<sub>3</sub>Cl<sub>2</sub>]·3H<sub>2</sub>O, [Cu<sub>2</sub>(cime)Cl<sub>4</sub>], and [Zn(cime)Cl<sub>2</sub>]·1.5H<sub>2</sub>O are discussed, where cime acts as monodentate (imidazole N3) or bidentate ligand (N3 and S8). IR, UV-vis, EPR and NMR spectroscopies, mass spectrometry (FAB+), were employed for the characterization. In order to identify the most reactive areas of cimetidine, the electrostatic potential map of the ligand was calculated; also the structures of minimum energy of the coordination compounds were modeled using DFT (B3LYP/def2-TZVP) calculations.