Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D 2 O) combined with Raman microspectroscopy. Incorporation of D 2 O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscaleresolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D 2 O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Ramanbased cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/ or glucosamine were identified, demonstrating the potential of the nondestructive D 2 O-Raman approach for targeted sorting of microbial cells with defined functional properties for singlecell genomics.ecophysiology | single-cell microbiology | carbohydrate utilization | nitrifier | Raman microspectroscopy M icroorganisms play a vital role in many environments. They mediate global biogeochemical cycles, catalyze biotechnological processes, and contribute to health and disease in the human body. The in situ study of microbial activity in natural and engineered ecosystems is therefore of great interest. For this purpose, several elegant methods have been established that use either transcriptional or translational activity of community members (i.e., metatranscriptomics, metaproteomics) (1-3) or the incorporation of isotopically labeled substrates into biomolecules (4-10) to infer the ecophysiology of microbes in such systems. However, these bulk techniques do not offer sufficient spatial resolution to study microbial activities at the micrometer scale. Therefore, important information can be overlooked because microbial communities are frequently spatially structured (e.g., biofilms) (11) and contain populations with life cycles (12,13). Furthermore, even apparently identical cells in clonal populations can have strongly divergent activities (14).Consequently, microbial ecophysiology is ideally studied also at the level of the single cell, but only a restricted number of approaches exist for determining physiological properties of individual cells in a microbial community. For exa...