We revisit here how Raman spectroscopy can be used to estimate the H content in hard hydrogenated amorphous carbon layers. The H content was varied from 2 at.% to 30 at.%, using heat treatments of a a-C:H, from room temperature to 1300 K and was determined independently using ion beam analysis. We examine the correlation of various Raman parameters and the consistency of their thermal evolution with thermo-desorption results. We identify a weak band at 860 cm -1 attributed to H bonded to C(sp 2 ). We show that the H D /H G parameter (Height ratio between the D and G bands) is quasi-linear in the full range of H content and can thus be used to estimate the H content. Conversely, we show that the m/H G parameter (ratio between the photoluminescence background, m, and the height of the G band), often used to estimate the H content, should be used with care, first because it is sensitive to various photoluminescence quenching processes and second because it is not sensitive to H bonded to C(sp 2 ).