1988
DOI: 10.1007/bf02126799
|View full text |Cite
|
Sign up to set email alerts
|

Ramanujan graphs

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

8
1,061
0
7

Year Published

1997
1997
2006
2006

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 1,230 publications
(1,088 citation statements)
references
References 16 publications
8
1,061
0
7
Order By: Relevance
“…It is a major result discovered by Lubotzky-Phillips-Sarnak [LPS88] (who also coined this term) and independently by Margulis [Mar88] that arbitrarily large dregular Ramanujan graphs exist when d − 1 is prime, and moreover they can be explicitly constructed. Morgenstern [Mor94] extended this to the case when d − 1 is a prime power.…”
Section: Ramanujan Graphsmentioning
confidence: 99%
“…It is a major result discovered by Lubotzky-Phillips-Sarnak [LPS88] (who also coined this term) and independently by Margulis [Mar88] that arbitrarily large dregular Ramanujan graphs exist when d − 1 is prime, and moreover they can be explicitly constructed. Morgenstern [Mor94] extended this to the case when d − 1 is a prime power.…”
Section: Ramanujan Graphsmentioning
confidence: 99%
“…(Autrement dit, s'il n'y a "pas trop" de circuits, les graphes E λ se comportent asymptotiquement comme des "graphes de Ramanujan", au sens de [16], [17].) En effet, d'après ce qui aété au dit au n o 7.1, il existe une mesure ν 0 portée par Ω telle que 1,…”
Section: Jean-pierre Serreunclassified
“…La condition (117) est notamment vérifiée si, pour tout r, on a c r,λ = 0 pour λ assez grand, autrement dit, si le calibre ("girth") de E λ tend vers l'infini avec λ. C'est le cas traité dans [16] et [17].…”
Section: Jean-pierre Serreunclassified
See 2 more Smart Citations