The rapid development of Industrial Internet of Things (IIoT) technologies has not only enabled new applications, but also presented new challenges for reliable communication with limited resources. In this work, we define a deceptively simple novel problem that can arise in these scenarios, in which a set of sensors need to communicate a joint observation. This observation is shared by a random subset of the nodes, which need to propagate it to the rest of the network, but coordination is complex: as signaling constraints require the use of random access schemes over shared channels, each sensor needs to implicitly coordinate with others with the same observation, so that at least one of the transmissions gets through without collisions. Unlike the existing medium access control schemes, the goal here is not to maximize total goodput, but rather to make sure that the shared message gets through, regardless of the sender. The lack of any signaling, aside from an acknowledgment or lack thereof from the rest of the network, makes determining the optimal collective transmission strategy a significant challenge. We analyze this coordination problem theoretically, prove its hardness, and provide low-complexity solutions. While a lowcomplexity clustering-based approach is shown to provide nearoptimal performance in certain special cases, for the general scenarios, we model each sensor as a multi-armed bandit (MAB), and provide a learning-based solution. Numerical results show the effectiveness of this approach in a variety of cases.