Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Random sequential adsorption (RSA) is a broadly used model for irreversible deposition on substrates. Over the last decades, a huge number of works have been published concerning this topic. Here we give a brief review of the results for irreversible deposition on two-dimensional discrete substrates. Depositing objects are randomly and sequentially adsorbed onto the substrate, and they are not allowed to overlap, so the jamming coverage θ j a m is less than in close packing. The kinetics of the process is described by the time-dependence of the coverage fraction θ ( t ) , and for the discrete substrates, this dependence was found to be of the form: θ ( t ) = θ j a m − A e − t / σ . Another topic of interest is the percolation of the deposit that can occur at a certain coverage. The coverage of the surface is increased through the RSA process up to the percolation threshold when a cluster that extends through the whole system appears. A percolating cluster arises in the system when the opposite edges are connected via some path of nearest neighbor sites occupied by the particles. Studying percolation is of great interest due to its relevance to conductivity in composite materials, flow through porous media, polymerization, the properties of nanomaterials, etc.
Random sequential adsorption (RSA) is a broadly used model for irreversible deposition on substrates. Over the last decades, a huge number of works have been published concerning this topic. Here we give a brief review of the results for irreversible deposition on two-dimensional discrete substrates. Depositing objects are randomly and sequentially adsorbed onto the substrate, and they are not allowed to overlap, so the jamming coverage θ j a m is less than in close packing. The kinetics of the process is described by the time-dependence of the coverage fraction θ ( t ) , and for the discrete substrates, this dependence was found to be of the form: θ ( t ) = θ j a m − A e − t / σ . Another topic of interest is the percolation of the deposit that can occur at a certain coverage. The coverage of the surface is increased through the RSA process up to the percolation threshold when a cluster that extends through the whole system appears. A percolating cluster arises in the system when the opposite edges are connected via some path of nearest neighbor sites occupied by the particles. Studying percolation is of great interest due to its relevance to conductivity in composite materials, flow through porous media, polymerization, the properties of nanomaterials, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.