The dynamic growth process of Escherichia coli CVCC249 under different concentrations of antibiotics was analyzed. The results suggested that the main reason that definitive results cannot be obtained by antibiotic susceptibility testing (AST) is that the ratio of drug concentration to the population of bacteria and the combined effect of drug concentration and action time cannot be completely determined with the methods used. Based on the analysis of the growth process with a series of concentrations of gentamicin acting for a certain time, and according to the forward difference method, a novel method for AST was proposed. The net increase in turbidity of the bacterial population was used to eliminate the existing effects of resting cells, and then the recurrent coefficient for a growing sequence was used to characterize the effect of antibiotics on bacterial division, and the contour plot was used to display and analyze the combined effect of drug concentration and action time. The inhibition rate of the antibiotics can be characterized as the dynamic change in the composite function of the antibiotic concentration and action time, which indicated that the inhibition rate was dependent on the combined effect of time and concentration of antibiotics. The effectiveness of this new method has been verified with different kinds of antibiotics, such as enrofloxacin, levofloxacin, and ceftriaxone, having different antibacterial mechanisms.