2022
DOI: 10.2478/amns.2022.2.0172
|View full text |Cite
|
Sign up to set email alerts
|

Random Fourier Approximation of the Kernel Function in Programmable Networks

Abstract: Random Fourier features represent one of the most influential and wide-spread techniques in machine learning to scale up kernel algorithms. As the methods based on random Fourier approximation of the kernel function can overcome the shortcomings of machine learning methods that require a large number of labeled sample, it is effective to be applied to the practical areas where samples are difficult to obtain. Network traffic forwarding policy making is one such practical application, and it is widely concerned… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?