In recent years, encryption technology has been developed rapidly and many image encryption methods have been put forward. The chaos-based image encryption technique is a modern encryption system for images. To encrypt images, it uses random sequence chaos, which is an efficient way to solve the intractable problem of simple and highly protected image encryption. There are, however, some shortcomings in the technique of chaos-based image encryption, such limited accuracy issue. The approach focused on the chaotic system in this paper is to construct a dynamic IP permutation and S-Box substitution by following steps. First of all, use of a new IP table for more diffusion of all image pixels based on a 1D logistic map to build IP table. Secondly, a new S-Box based on 2D-Henon chaos was created using more confusion to replace G-channel image data. Finally, design of a modern image encryption approach. This approach uses the key process confusion and diffusion operation and depend on IP and S-Box proposals in the encryption process and several shuffling operations using the 3D- Lornez chaos theory. Theoretical research and simulation suggest that starting sensitivity value of this method is high, has high protection, and encryption speed. Moreover, it also holds the value of the neighboring RGB close to zero. The studies show that the information security capabilities would be both safer and more efficient, as a result of our image quality assessment study. Number of Differential Pixel Rate Change Attacks (NPSR), Unified Average Altered Intensity (UACI), are quality and strength of encryption processing are proved by pixel correlation, Entropy to be good results.